AI expert warns of algo-based market manipulation
An artificial intelligence professor warns of machine learning ‘arms race’ for regulators against those seeking to use new technologies to manipulate financial markets.
“The prospect of supercharged manipulation is likely. We know that manipulation is already a very prevalent practice and so if bodies are doing this, they’re going to try and avail themselves of the latest tools. We would be foolish not to expect to see intentional manipulation enhanced by AI.”
So says Michael Wellman, a University of Michigan professor who earned his PhD in artificial intelligence from MIT in 1988 and has spent his career researching AI and its applications in economics.
As a result of AI already being deeply integrated into the financial services sector and new advancements within artificial intelligence happening more and more frequently, Wellman postulates that while there is a possibility of innovation, there is also the potential for market abuse.
His views are based on an experiment conducted by Wellman and his team at Michigan, in which they built a simple spoofing algorithm alongside a benign market-making trade algorithm and built a detector that could tell the difference between the two algos. Both algos submitted, changed, and canceled orders, and it was easy to detect which was which—that is, until the team had the spoofing algorithm attempt to evade detection by acting more like a market-maker. By learning how to avoid detection, spoofing algorithms can learn to manipulate markets by mirroring nonthreatening algorithmic trading systems. This sets a precedent for intentional, AI-led market disruption.
Wellman isn’t some random academic speaking in abstracts: He had worked in the e-commerce wave of the early 90s, but in 2008, the global financial crisis spurred him into understanding the importance of the “big black box” of finance. From then, he decided to focus on the financial markets, intrigued by people within finance asking for more computer scientists to work on computational phenomena at the intersection of new technology and financial problems. His work in shaving milliseconds and microseconds off response time in the latency arms race of high-frequency trading firms changed the effective dynamics of trading as a concept and cemented Wellman’s place within the finance world as a domain. Then he moved on to studying market manipulation using his knowledge of AI.
“I’ve been around for a while, and it reminds me of what we were like with respect to the internet 30 years ago,” Wellman says. “Whatever you were doing, it was necessary to ask: ‘How does the web and the internet change how we do business?’ and of course, it did change things quite pervasively. AI might not play out the same way, but it’s an echo.”
That may be true, but it’s an echo with the potential to do serious damage. On January 8, Wellman presented to the Commodity Futures Trading Commission’s Technology Advisory Committee (TAC) on the subject of responsible AI usage in the financial markets. Throughout his 20-minute presentation, Wellman highlighted that while AI could be used by regulators looking to detect cases of market manipulation, it could also be used by bad actors to enact manipulation, forcing both parties into a technological “arms race.”
Wellman illustrates that training algorithms to report cases of market manipulation by other algorithms sets up an adversarial learning situation, wherein both algorithms learn the techniques of each other and attempt to obfuscate their goals, to increase their respective chances of success.
“Whenever you have a machine-learning approach to try to detect adverse behavior, you get into a kind of arms race, which is called adversarial learning,” Wellman told the TAC. “In this case we have a race between a detector and a manipulator. The detector looks at behavior, classifies it as being manipulative or not, and the would-be manipulator is trying to manipulate but also trying to evade detection. The problem is that any advance in detection immediately could be exploited by a manipulator to evade detection.”
Wellman likens this interaction to spam email bots in the early 2000s. Initially bots ran rampant, clogging up email inboxes with spam, phishing links, or unrelated junk email and taking advantage of the lax security systems, but when email providers toughened up their spam detection software and spam’s prevalence declined, it pgot smarter.
“When spam filters came in, some of the spammers started obfuscating their messages, spelling things wrong, and putting weird symbols to get around the detectors,” Wellman explains. “That sometimes works, but then the messages would be weirder and less effective as spam.”
In response, regulators and exchanges are tooling up to combat potential manipulation, but their efforts may not be enough. “They’re really working hard to improve their detection. This arms race is without a doubt going to be playing out—and it’s not clear which side is going to have the long-term upper hand in that,” he says.
Aside from regulators and exchanges, some trade surveillance companies are already investigating the idea of using machine learning to mess with the markets. Surveillance and compliance specialist Nice Actimize has tested out machine-learning models to improve its Surveil-X surveillance and analytics platforms, while Nasdaq’s Smarts platform has integrated artificial intelligence into its detection software.
For his part, Wellman believes that the advent of these new technologies that could result in becoming locked in an arms race death spiral requires significant structural changes to the market to ensure a robust defense against manipulation, such as increases—or perhaps decreases—in transparency.
“Paradoxically, it could involve more transparency or in some respects, less. Let’s say people cannot see the order book, well then no one can manipulate the order book because no one will be misled by the information there. You can’t spoof a dark pool,” Wellman says.
Further reading
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@waterstechnology.com or view our subscription options here: http://subscriptions.waterstechnology.com/subscribe
You are currently unable to print this content. Please contact info@waterstechnology.com to find out more.
You are currently unable to copy this content. Please contact info@waterstechnology.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (point 2.4), printing is limited to a single copy.
If you would like to purchase additional rights please email info@waterstechnology.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. As outlined in our terms and conditions, https://www.infopro-digital.com/terms-and-conditions/subscriptions/ (clause 2.4), an Authorised User may only make one copy of the materials for their own personal use. You must also comply with the restrictions in clause 2.5.
If you would like to purchase additional rights please email info@waterstechnology.com
More on Regulation
Off-channel messaging (and regulators) still a massive headache for banks
Waters Wrap: Anthony wonders why US regulators are waging a war using fines, while European regulators have chosen a less draconian path.
Banks fret over vendor contracts as Dora deadline looms
Thousands of vendor contracts will need repapering to comply with EU’s new digital resilience rules
Chevron’s absence leaves questions for elusive AI regulation in US
The US Supreme Court’s decision to overturn the Chevron deference presents unique considerations for potential AI rules.
Aussie asset managers struggle to meet ‘bank-like’ collateral, margin obligations
New margin and collateral requirements imposed by UMR and its regulator, Apra, are forcing buy-side firms to find tools to help.
The costly sanctions risks hiding in your supply chain
In an age of geopolitical instability and rising fines, financial firms need to dig deep into the securities they invest in and the issuing company’s network of suppliers and associates.
Industry associations say ECB cloud guidelines clash with EU’s Dora
Responses from industry participants on the European Central Bank’s guidelines are expected in the coming weeks.
Regulators recommend Figi over Cusip, Isin for reporting in FDTA proposal
Another contentious battle in the world of identifiers pits the Figi against Cusip and the Isin, with regulators including the Fed, the SEC, and the CFTC so far backing the Figi.
US Supreme Court clips SEC’s wings with recent rulings
The Supreme Court made a host of decisions at the start of July that spell trouble for regulators—including the SEC.